

January 2018

Pearson Edexcel International GCSE Mathematics A (4MA0) Higher Paper 3HR www.mymathscloud.com

Edexcel and BTEC Qualifications

www.mymathscloud.com Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018 Publications Code 4MA0_3HR_1801_MS All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- www.mymathscloud.com All candidates must receive the same treatment. Examiners must mark the first candidate in exactly • the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown • they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where • the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately. •
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full • marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will • be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative • response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- \circ cao correct answer only
- \circ ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- \circ dep dependent
- \circ indep independent
- \circ eeoo each error or omission

• No working

www.mymathscloud.com If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme. If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions •

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

				mm.myn.
Question	Working	Answer	Mark	Notes
1 (a)	5x + 5y - 3x + 3y	2x + 8y	2	M1
				A1
(b)		t^{10}	1	B1
(\mathbf{c})		m ¹²	1	B1
(0)		m	1	
2	$\angle ADF = 180 - 124 (= 56) \text{ or } \angle ADF - \frac{360 - 2 \times 124}{(-56)}$	112	4	M1
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$			N(1
	$ZDAE = ZADE = 56^{\circ}$			M1
	$\angle AEC = 2 \times 56^{\circ}$			M1 for 2×56 or for $\angle AED =$
				$180 - 2 \times 56^{\circ} (=68)$ and
				∠ <i>AEC</i> = 180 – '68'
				A1

				www.mymain
Question	Working	Answer	Mark	Notes
3	$210 \div 9.72 (= (\pounds)21.60)$	55	4	M1 for $210 \div 9.72$ or $(\$)1 = 9.72 \div 1.10$
	$(21.60)^{2} \times 1.10 (-(1)22.765)$			(= 8.836 (EGP)) oe M1 for 21.60 $\div 1.10$ or 210 \div
	21.00 \land 1.10 (- (\$)25.703)			(= 23.765) oe
	79 – 23.765			M1
				A1 (Accept answer in the range 55 – 55.3)
ALT	79 ÷ 1.1 × 9.72 (= 698.7) OR	55	4	M1 convert \$79 into pounds OR convert
	79 ÷ 1.1 (= 71.81) and 210 ÷ 9.72 (= 21.60)			\$79 into euros and 210 pounds into euros
	'698' − 210 (= 488.7) OR '71.8' − '21.6' (= 50.21)			M1 (dep) for subtraction '698' – 210 or '71.8' – '21.6'
	'488' ÷ 9.72 × 1.1 OR '50.2' × 1.1			M1 for conversion of answer into dollars
				55.3)

				WWW. TY MAINS CIOU
Question	Working	Answer	Mark	Notes
4 (a)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Correct line	3	B3for a correct line between $x = -2$ and $x = 3$ If not B3 then award B2 for a correct line through at least 3 of $(-2, -6) (-1, -2) (0, 2) (1, 6) (2, 10) (3, 14)$ OR for all of $(-2, -6) (-1, -2) (0, 2) (1, 6) (2, 10) (3, 14)$ plotted, not joined OR line through $(0, 2)$ and clear attempt to use a gradient of 4 eg line through $(0, 2)$ and $(1, 10)$ If not B2 then award B1 for at least 2 correct points stated or plotted (may be in a table) OR for a line drawn with a positive gradient through $(0, 2)$ OR for a line with a gradient of 4
(b)	4p + 2 = 50	12	2	M1 $4p + 2 = 50$ A1
5	$\frac{(24+30)}{2} \times 12(=324)$ $\sqrt{324'} (=18)$ $4 \times 18'$	72	4	M1 for a complete method for the area M1 M1 A1

					mm
Ouestion	Working	Answer	Mark		Notes
6	$\pi \times 80 \ (= 251.327)$	91.3	3	M1	oe
	$\pi \times 80 - 2 \times 80 \ (= 91.327)$			M1	for a complete method
				A1	91.2 - 91.43
7	$\frac{3}{4} \times 24 \ (= 18) \ \text{or} \ \frac{1}{4} \times 24 \ (= 6)$	65%	4	M1	
	$\frac{`18' \times 30 (= 540)}{'540' + '120' - 400} \text{ or } `6' \times 20 (= 120)$ $\frac{'540' + '120' - 400}{400} \times 100 (= 65) \text{ oe}$			M1 M1	for a complete method
	400			A1 SC:	B3 for an answer of 165%
8	$50000 \times 30 \ (= 1500000)$ or $50000 \div (100 \times 1000) \ (= 0.5)$ or $30 \div (100 \times 1000) \ (= 0.0003)$	15	3	M1	for a correct first step or an answer with the digits 15 eg 0.0015, 1500
	'1500000' ÷ (100 × 1000) or '0.5'× 30 or '0.0003' × 50000			M1	for a complete method
				A1	

						mm.
Question		Working	Answer	Mark		Notes
9	$\frac{5}{8} \times \frac{3}{4} \left(= \frac{15}{32} \right)$	$\frac{5}{8} \times 320 \ (= 200) \ \text{or} \ \left(1 - \frac{5}{8}\right) \times 320 \ (= 120)$	$\frac{23}{32}$	4	M1	
	$\left(1 - \frac{5}{8}\right) \times \frac{2}{3} \left(=\frac{6}{24}\right)$	$\frac{3}{4}$ ×'200' (= 150) oe and $\frac{2}{3}$ × '120' (= 80) oe			M1	
	$(\frac{15}{32}) + (\frac{6}{24})$ oe	$\frac{150'+80'}{320}$ oe			M1	for a complete method
10 ()				1	A1	oe
10 (a)			2, 3, 4, 6, 8, 9, 10, 12		B1	
(b)			5, 7, 11, 13	2	B2	(B1 any set of 4 elements which satisfies exactly one of $A \cap C = \emptyset$, $B \cap C = \emptyset$ or just 2 or 3 of 5, 7, 11, 13 or all four correct values and one incorrect value eg 1, 5, 7, 11, 13)
11	$20^2 - 10^2 (= 300)$		13.2	4	M1	
	$BD = \frac{\sqrt{300'}}{2} (= 8.66)$)			M1	
	$AD^2 = 10^2 + (0.5 \times \text{the})$	$\operatorname{eir} BC)^2$			M1	(indep)
					A1	for answer in the range 13.2 – 13.25

				mm
				·.73
Question	Working	Answer	Mark	Notes
2 (a)	$\frac{12}{8}$ oe or $\frac{8}{12}$ oe or $\frac{5}{8}$ oe or $\frac{8}{5}$ oe	7.5	2	M1
	8 12 8 5			A1 oe
(b)	$13.5 - \frac{8}{12} \times 13.5$ oe	4.5	2	M1 for a complete method
	12			A1 oe
3	Total distance = $b + x$ or $v \text{ km/h} = v \times 1000 \div 3600 \text{ m/s}$	$T = \frac{18(b+x)}{5v}$	3	M1 for total distance or conversion from km/h to m/s
	$(T =) (b + x) / (v \times 1000 \div 3600)$			M1 for any correct expression for T
				A1 correct and fully simplified (numerator may not be factorised)
4	$3000 \times (1 + 0.024)^3 (= 3221.22(5))$ or 3072, 3145.72(8), 3221.22(5)	3132.74	4	M2 for a complete method to find the amount in the account after 3 years before the 40% deduction
				If not M2 then M1 for $3000 \times (1 + 0.024)$ oe or $3000 \times (1 + 0.024)^2$ oe
	$(3221.22(5)) - [(3221.22(5)) - 3000) \times 0.4]$ oe			M1 (indep) for finding 60% of their interest
				A1 3132 – 3133

				WWW. Mymathscloud.
Question	Working	Answer	Mark	Notes
15	eg $3x - 4y = 8$ 10x - 4y = 22 7x = 14 eg $3 \times 2^{2} - 4y = 8$ $3x - 4 \times -0.5^{2} = 8$ eg $3x - 4x - 0.5^{2} = 8$	2, $-\frac{1}{2}$	3	 M1 for a complete method to eliminate one variable (condone one arithmetic error) M1 (Dep on M1) for substituting the found variable or starting again to eliminate the other variable A1 dep on M1 NB: candidates showing no correct algebraic working score 0 marks.
16 (a)		700	1	B1 Answer in the range 700 - 720
(b)	eg $Q_1 = 510$, eg $Q_3 = 870$	360	2	 M1 for a correct method to identify lower and upper quartiles eg readings from 30 and 90 from the vertical axis A1 Answer in the range 330 - 380
(c)	$\frac{85}{100} \times 120 \ (=102) \ \text{or} \ \frac{15}{100} \times 120 \ (=18)$	940	3	M1 M1 for using the graph to find the value of <i>N</i> A1 930 - 950

						mm. m
						3
Question		Working	Answer	Mark		Notes
17 (a)	$eg \frac{(x+1)^2}{(2x+1)(x+1)} - \frac{(2x+1)^2}{(2x+1)(x+1)} - \frac{(x+1)^2 - 1}{(2x+1)(x+1)} OR \frac{x^2 + 1}{(2x+1)(x+1)}$	$\frac{1}{1)(x+1)} \text{ OR}$ $\frac{2x+1-1}{(x+1)}$	Shown	2	M1	for correctly writing both fractions over a common denominator
					A1	shown with fully correct working
(b)	$x^2 + 2x = 1$		0.414, -2.41	4	M1	for $x^2 + 2x = 1$ oe
	$\frac{-2\pm\sqrt{2^2-4\times1\times-1}}{2}$	$(x+1)^2 - 1 = 1$			M1	for substituting values from their quadratic equation into the formula (condone one sign error in substitution) or a correct first step for completing the square
	$\frac{-2\pm\sqrt{8}}{2}$	$(x+1) = \pm\sqrt{2}$			M1	for method to solve their equation
	$OR \frac{-2 \pm \sqrt{2^2 + 4}}{2}$					
	OR $\frac{-2\pm 2\sqrt{2}}{2}$				A 1	awat day on the second Marcale
					AI	(accept 0.41)

					mm.m.
Question	Working	Answer	Mark		Notes
(a)	$\frac{4}{7} \times \frac{3}{6}$	$\frac{12}{42}$	2	M1 A1	oe
(b)	$P(1, 3) = \frac{1}{7} \times \frac{1}{6} \times 4 \left(=\frac{4}{42}\right)$	$\frac{14}{42}$	4	M1	for method to find P(1, 3) OR P(3, 1) OR P(2, 2)
	OR P(3, 1) = $\frac{1}{7} \times \frac{1}{6} \times 4 \left(=\frac{4}{42}\right)$				
	OR P(2, 2) = $\frac{3}{7} \times \frac{2}{6} = \left(\frac{6}{42}\right)$				
	Two of P(1, 3) = $\frac{1}{7} \times \frac{1}{6} \times 4 \left(=\frac{4}{42}\right)$			M1	for method to find two of P(1, 3), P(3, 1), P(2, 2)
	$P(3, 1) = \frac{1}{7} \times \frac{1}{6} \times 4 \left(= \frac{4}{42} \right)$				
	$P(2, 2) = \frac{3}{7} \times \frac{2}{6} = \left(\frac{6}{42}\right)$				
	eg $\frac{1}{7} \times \frac{1}{6} \times 4 + \frac{1}{7} \times \frac{1}{6} \times 4 + \frac{3}{7} \times \frac{2}{6}$			M1 A1	for a complete method oe
				SC	With replacement B2 for an answer of $\frac{14}{-1}$
					(B1 for $\frac{1}{7} \times \frac{1}{7} \times 8$ or $\frac{3}{7} \times \frac{2}{7}$)

				www.myn	AM ASE
Question	$\frac{\text{Working}}{(TOR - 2 \times 78)(-156)}$	Answer	Mark 1	Notes M1	
	Reflex $\angle TOB = 360 - `156' (= 204) and \angle OTP = 90\angle OBP = 360 - `204' - 90 - 34 \text{ or } \angle OBP = 180 - 90 - `12' \times 2 - 34NOTE: Values could be marked on the diagram$			M1 for method to find reflex $\angle OBT, \angle OTB$ and $\angle OTP$ $\angle TOB$ and $\angle OTP$ ΔTP M1 for a complete methodA1	
20	e.g. $5 \times 25 (= 125)$ $10 \times 10 \times 3 (= 300)$ Area from 55 to 90 is $5 \times 25' + 10 \times 10 \times 3 (= 425)$	$\frac{425}{1875}$	3	 M1 for frequency found for any bar between 10 and 55 or between 55 and 90 M1 for a complete method to find the number of snails with lengths more than 55 mm A1 oe 	

					www.m
Ouestion	Working	Answer	Mark		Notes
21 (a) (i)	$4a^k(a^2x^3)^w$ (= 4ax ²)	2	4	M1	for substitution
		3		A1	
(ii)	compare powers of <i>a</i> eg $1 = k + "2w"$	1		M1	forming and equation for k
		$-\frac{-3}{3}$		A1	
		_			
\underline{ALT} (a) (i)	$(z)^{\frac{1}{3}}$	$\frac{2}{2}$		M1 A1	for making x the subject
	$\left \begin{array}{c} x - \left(\overline{a^2} \right) \right $	3			
(a) (ii)	$(1)^2$	1		M1	(may be seen in a(i))
	$y = 4a \left(\frac{z}{z} \right)^{\overline{3}}$	$-\frac{1}{3}$		A1	
	$\int data \left(\left(a^2 \right) \right)$				
(b)	$m = 1000 \text{ so } m \times m^m = 1000 \times 1000^{1000} (-1000^{1001})$		3	M1	$(103)^{10^3+1}$
	$m = 1000, 50 m \land m = 1000 \land 1000 (= 1000)$	10^{3003}	_	N/1	oe eg (10°)
				MI	for method which is I step away from the correct answer
					$eg (10^3)^{1001}$
				A1	-0 ()

					WWW. MYR.	Mainscioud.
Question	Working	Answer	Mark		Notes	
22	eg $\frac{1}{3} \times \pi \times (3r)^2 \times 4r$ (= 12 πr^3) or $\frac{1}{2} \times \frac{4}{3} \times \pi \times (3r)^3$ (= 18 πr^3)	3√11	5	M1	for a method to find the volume of the cone or the hemisphere (condone missing brackets)	
	eg $\frac{1}{3} \times \pi \times (3r)^2 \times 4r + \frac{1}{2} \times \frac{4}{3} \times \pi \times (3r)^3$			M1	for a method to find the total volume of the cone and the hemisphere (condone missing brackets)	
	$\operatorname{eg}\frac{1}{3} \times \pi \times (3r)^{2} \times 4r + \frac{1}{2} \times \frac{4}{3} \times \pi \times (3r)^{3} = 330\pi$			M1	for a correct equation	
	$30\pi r^3 = 330\pi$			M1 A1	for a correct simplified equation	

					www.mymaths
Question	Working	Answer	Mark		Notes
23 (a)	$(a+1)^2 = \frac{25}{9}$	$\frac{2}{3}$	3	M1	
	$a+1=(\pm)\frac{5}{3}$	5		M1	or $a+1=\frac{5}{3}$ or solving a correct quadratic equation of the form $ax^2 + bx + c = 0$ e.g.
					$a^2 + 2a - \frac{16}{9} = 0$ followed by $\left(a - \frac{2}{3}\right)\left(a + \frac{8}{3}\right)(=0)$
					or $a = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times -\frac{16}{9}}}{2}$ (allow 1 sign error)
				A1	(DEP on at least M1) for $\frac{2}{3}$ as the only value
(b)	$fg(x) = f\left(\frac{1}{x}\right) = \left(\frac{1}{x} + 1\right)^2$	Shown	2	M1	
	$x^2 \left(\frac{1}{x} + 1\right)^2 = \text{etc.}$			A1	
(c)	$y = (x+1)^2 \therefore \sqrt{y} = x+1$ or $x = (y+1)^2 \Rightarrow \sqrt{x} = y+1$	$\sqrt{x}-1$	2	M1	(accept $\pm \sqrt{y} = x+1$ or $\pm \sqrt{x} = y+1$)
	$x - (y + 1) \cdots \sqrt{x} - y + 1$			A1	